Optical Signal Processing

Prof. Inkyu Moon
Dept. of Robotics Engineering, DGIST

Chapter 4
Transmittance Functions,
Lenses and Gratings

Introduction

- The beam sources in previous lectures are simple apertures illuminated by a plane wave.
- They are modeled with real functions and have a zero phase component.
- In this chapter, functions are presented that create a more complicated field by altering the magnitude and/or phase of the field.
- In general, these transmittance functions can be thought of as multiplying an incident field to create a desired effect.
- Some represent well-known optical components such as a lens or a diffraction grating.

Tilt

- An optical beam can be steered in a propagation simulation by applying a "tilt" to the beam wavefront.
- Suppose a tilt of angle of α is applied to a wavefront, as shown in Fig. 1.

- where the dashed line represents the tilted wavefront of the beam and the arrow indicates the intended direction of propagation.

Tilt

- The wavelength λ corresponds to 2π rad in the phase notation, so using the wavenumber parameter $k=2 \pi / \lambda$, the phase function for producing the tilt is

$$
\phi_{Y}(x, y)=k y \tan \alpha .
$$

- More generally, to produce a tilt α relative to the z axis but in a radial direction defined by the angle θ in the $x-y$ plane (see Fig. 2), we can use

$$
\phi(x, y)=k(x \cos \theta+y \sin \theta) \tan \alpha, \quad \theta=\tan ^{-1}(y / x) .
$$

Tilt

- The transmittance function is, therefore,

$$
t_{A}(x, y)=\exp [j k(x \cos \theta+y \sin \theta) \tan \alpha] .
$$

- The function tilt is listed here:

```
function[uout]=tilt(uin,L,lambda,alpha,theta)
% tilt phasefront
% uniform sampling assumed
% uin - input field
% L - side length
% lambda - wavelength
% alpha - tilt angle
% theta - rotation angle (x axis 0)
% uout - output field
[M,N]=size(uin); %get input field array size
dx=L/M; %sample interval
k=2*pi/lambda; %wavenumber
x=-L/2:dx:L/2-dx; %coords
[X,Y]=meshgrid(x,x);
uout=uin.*exp(j*k*(X*}\operatorname{cos}(theta)+\mp@subsup{Y}{}{*}\operatorname{sin}(theta))..
    *tan(alpha)); %apply tilt
end
```


Tilt

- Test the tilt function by returning to the square beam example from the previous lecture.
- Insert the following before the propagation call:

```
deg=pi/180;
alpha=5.0e-5; %rad
theta=45*deg;
[u1]=tilt(u1,L1,lambda,alpha,theta);
```

- Fig. 3 is the irradiance result after executing the example.

Fig. 3.

Tilt

- Sampling limitations also exist for this technique.
- As we might guess, if the tilt is large enough to translate the beam in the observation plane beyond the grid boundary, there will be trouble.
- To study this limitation, consider that tilt is a linear phase exponential applied to the source function U_{1}.
- Assume a single-axis tilt, and apply the shift theorem to the transform of the source field:

$$
\mathfrak{J}\left\{U_{1}\left(x_{1}, y_{1}\right) \exp \left(j k x_{1} \tan \alpha\right)\right\}=G_{1}\left(f_{X 1}-\frac{\tan \alpha}{\lambda}, f_{Y 1}\right),
$$

- where $G_{1}=\Im\left\{U_{1}\right\}$.

Tilt

- If the source has a bandwidth of B_{1}, then considering the spectrum is essentially shifted, the combined effective bandwidth for the field leaving the source is

$$
\begin{equation*}
B_{1}^{+T}=B_{1}+\frac{\tan \alpha}{\lambda} . \tag{1}
\end{equation*}
$$

- The propagation criterion is: $B_{1}{ }^{+T} \leq 1 /(2 \Delta x)$.
- Using Eq. (1), and with some rearrangement, we get

$$
\alpha \leq \lambda\left(\frac{1}{2 \Delta x_{1}}-B_{1}\right),
$$

- In typical simulations, the maximum available tilt angle is quite small, which is consistent with the paraxial nature of the Fresnel propagator.

Focus

- Another useful operation is converging ("focusing") or diverging ("defocusing") an optical beam.
- A beam with a spherical wavefront, as shown in Fig. 4 , will converge to the position z_{f} on the z axis.

Fig. 4. Converging wavefront.

Focus

- We can proceed in the same manner as was done for tilt to find the converging phase front in the x y plane at $z=0$.
- This is given by $\phi_{s}(x, y)=-k \sqrt{z_{f}^{2}+x^{2}+y^{2}}$.
- The negative sign in the above Eq. (2) corresponds to a converging wavefront, as illustrated in Fig. 4.
- A positive sign is for a diverging wavefront.

Focus

- The application of the binomial approximation gives a parabolic phase front that approximates the spherical phase front:

$$
\phi(x, y)=-\frac{k}{2 z_{f}}\left(x^{2}+y^{2}\right) .
$$

- The transmittance function for focus is, therefore,

$$
\begin{equation*}
t_{A}(x, y)=\exp \left[-j \frac{k}{2 z_{f}}\left(x^{2}+y^{2}\right)\right] . \tag{3}
\end{equation*}
$$

- This is a phase chirp function of the same form for the Fresnel impulse response function h, although the exponent sign is negative.

Focus

- A MATLAB function for applying focus follows:

```
function[uout]=focus(uin, L,lambda,zf)
% converging or diverging phase-front
% uniform sampling assumed
% uin - input field
% L - side length
% lambda - wavelength
% zf - focal distance (+ converge, - diverge)
% uout - output field
[M,N]=size(uin); %get input field array size
dx=L/M; %sample interval
k=2*pi/lambda; %wavenumber
%
x=-L/2:dx:L/2-dx; %coords
[X,Y]=meshgrid(x,x);
uout=uin.*exp(-j*k/(2*zf)*(X.^2+Y.^2)); %apply focus
end
```


Focus

- Try this on the square beam example.
- Insert the following before the propagation call and run the script:

```
zf=2000;
[u1]=focus(u1,L1,lambda,zf);
```

- The result is shown in Fig. 5.

Fig. 5. (a) Image irradiance and (b) profile for the focus example.

Focus

- A negative focus value puts the focal point in a virtual position behind the plane and causes a diverging wave (see the following Fig. (b)).

Geometrical ray diagram for (a) a converging wavefront and (b) a diverging wavefront at the source plane.

Focus

- Multiplying a source field by Eq. (3) has the effect of increasing the source bandwidth.
- The combination effective bandwidth is approximately:

$$
B_{1}^{+F} \approx B_{1}+\frac{D_{1} / 2}{\lambda\left|z_{f}\right|} .
$$

- where D_{1} is the effective support of the source field (maximum linear width)
- For $B_{1}^{+F} \leq 1 /(2 \Delta x)$, then with some rearranging, a bound is obtained for the focal distance:

$$
\begin{equation*}
\left|z_{f}\right| \geq \frac{D_{1} / 2}{\lambda}\left(\frac{1}{2 \Delta x_{1}}-B_{1}\right)^{-1} . \tag{4}
\end{equation*}
$$

Lens

- A lens is an optical element that uses refraction to focus or diverge light.
- The transmittance function for an ideal, simple lens is given by:

$$
\begin{equation*}
t_{A}(x, y)=P(x, y) \exp \left[-j \frac{k}{2 f}\left(x^{2}+y^{2}\right)\right], \tag{5}
\end{equation*}
$$

- where f is known as the focal length and $P(x, y)$ is the pupil function.

Lens

- This is essentially the same complex exponential defined for focus with z_{f} replaced by f.
- A positive focal length produces a converging wavefront from a plane-wave input and a negative focal length produces a diverging wavefront.
- The pupil function accounts for the physical size of the lens.
- For example, the most common lens pupil function is a circle

$$
P(x, y)=\operatorname{circ}\left(\frac{\sqrt{x^{2}+y^{2}}}{w_{L}}\right),
$$

- where w_{L} is the radius of the lens aperture.

Lens

- It is not always practical to implement the transmittance function of Eq. (5) in Fresnel propagation as was done for the focus example.
- This is because the focal length f is governed by the same criterion as z_{f} given in Eq. (4), and since f tends to be relatively short, a large number of samples are required.

Lens

- Assume a plane wave incident on the lens, which implies $B_{1} \rightarrow 0$, then with some algebra the expression in Eq. (4) leads to

$$
\frac{|f|}{D_{L}} \geq \frac{\Delta x}{\lambda},
$$

- where $D_{L}=2 w_{L}$. The ratio $|f| / D_{L}$ is known as the focal ratio, or the f-number, indicated by $f / \#$.
- With this substitution,

$$
\begin{equation*}
f / \# \geq \frac{\Delta x}{\lambda} . \tag{6}
\end{equation*}
$$

Lens

- Practical lenses have f /\# ranging from perhaps 2 to roughly 50 and diameters $2 w_{L}$ of a few millimeters to maybe 100 mm .
- Take a typical value, $f / \#=10$ and a diameter of 25 mm.
- Assume visible light $\lambda=0.5 \times 10^{-6} \mathrm{~m}$, Eq. (6) yields

$$
\Delta x \leq 5 \times 10^{-6} \mathrm{~m} .
$$

- Furthermore, to implement Fresnel propagation, the array side length L needs to at least span the lens diameter.

Lens

- Thus, the linear number of samples in an array required to model this lens is

$$
M \geq \frac{L}{\Delta x}=\frac{25 \times 10^{-3}}{5 \times 10^{-6}}=5000,
$$

- Thus, modeling lenses directly with the Fresnel propagator is usually practical only for large f/\#.
- However, all is not lost for smaller $f / \#$.
- If the field incident on the lens is $U_{1}\left(x_{1}, y_{1}\right)$, then the field exiting the lens is $U_{1}\left(x_{1}, y_{1}\right) t_{A}\left(x_{1}, y_{1}\right)$.

Lens

- Insert this into the Fresnel diffraction expression and set $z=f$.
- The chirp functions in the integral cancel, and the result is

$$
\begin{align*}
U_{2}\left(x_{2}, y_{2}\right)= & \frac{\exp (j k f)}{j \lambda f} \exp \left[j \frac{k}{2 f}\left(x_{2}^{2}+y_{2}^{2}\right)\right] \tag{7}\\
& \times \iint U_{1}\left(x_{1}, y_{1}\right) P\left(x_{1}, y_{1}\right) \exp \left[-j \frac{2 \pi}{\lambda f}\left(x_{2} x_{1}+y_{2} y_{1}\right)\right] d x_{1} d y_{1} .
\end{align*}
$$

- The expression in Eq. (7) shows the field at the focal plane of an ideal positive lens is simply the Fraunhofer pattern of the incident field with $z=f$.

Lens

- To find the field or irradiance pattern in the focal plane of a positive lens, including one with a small f/\#, the function "prop FF" from the previous lecture can be applied replacing z with f.
- Take the parameters from the $f / 10$ lens example and assume U_{1} is a unit amplitude plane wave (select $M=250$ and $L=250 \mathrm{~mm}$).

Lens

- Figure 6 shows the focused irradiance pattern formed with an ideal circular-shaped lens, which is known as the Airy pattern.

(a)

(b)

Fig. 6. (a) Image irradiance and (b) x-axis profile for the lens Fraunhofer pattern. The large peak irradiance value in (b) is because all of the power in the unit amplitude field incident on the lens is being focused to a very small area.

Lens

- A special case of interest is when the source field is located in the front focal plane of a positive lens, a distance f from the lens (see Fig. 7).
$U_{l}\left(x_{1}, y_{l}\right)$

Fig. 7. "Fourier transform" lens arrangement.

- For this arrangement the field at the focal plane is (refer to Fourier Optics, figure 5.6)

$$
\begin{aligned}
U_{2}\left(x_{2}, y_{2}\right)= & \frac{\exp (j k f)}{j \lambda f} \\
& \times \iint U_{1}\left(x_{1}, y_{1}\right) P\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \exp \left[-j \frac{2 \pi}{\lambda f}\left(x_{2} x_{1}+y_{2} y_{1}\right)\right] d x_{1} d y_{1} .
\end{aligned}
$$

Lens

- The chirp phase factor out front is now gone, so the focal plane field is a scaled Fourier transform of the input field.
- The arguments in the pupil function account for vignetting, which is a loss of light for off-axis points in the input field due to the finite pupil size.
- The effect of vignetting can be reduced if the lens pupil is oversized compared to the support of the input field.

Gratings

- A grating is an optical component that has a spatially periodic structure.
- Incident light diffracts either in transmission or reflection from the structure, and the colors (wavelength components) of the light become spatially separated some distance from the grating.
- Gratings are commonly used in spectrometers for examining the wavelength spectrum of an optical signal or in spectrophotometers that measure the spectral characteristics of an optical component.
- The diffraction pattern from a grating is usually observed in the Fraunhofer region.

Gratings (Cosine Magnitude Example)

- A conventional grating has grooves cut into its surface that impart a magnitude and/or phase disturbance to the incident wave.
- To demonstrate modeling of periodic functions like those in gratings, start with an amplitude transmittance function given by:

$$
\begin{equation*}
t_{A}(x, y)=\frac{1}{2}\left[1-\cos \left(2 \pi \frac{x}{P}\right)\right] \operatorname{rect}\left(\frac{x}{D_{1}}\right) \operatorname{rect}\left(\frac{y}{D_{1}}\right) . \tag{8}
\end{equation*}
$$

Gratings (Cosine Magnitude Example)

- Figure 8 illustrates a 1D profile of this grating.

Fig. 8. Cosine grating profile.

Gratings (Cosine Magnitude Example)

- In Eq. (8) the grating is defined within the 2D area $D_{1} \times D_{1}$.
- The cosine pattern is only a function of x and has a period P.
- Typically, $P \ll D_{1}$.
- When illuminated by a unit amplitude plane wave, the source field is $U_{1}\left(x_{1}, y_{1}\right)=t_{A}\left(x_{1}, y_{1}\right)$.
- The Fraunhofer pattern is created using a lens of focal length f.

Gratings (Cosine Magnitude Example)

- The grating is simulated in the following script:

```
% grating_cos diffraction grating example
lambda=0.5e-6; %wavelength
f=0.5; %propagation distance
P=1e-4; %grating period
D1=1.02e-3; %grating side length
LI=1e-2; %array side length
M=500; %# samples
dx1=L1/M;
x1=-L1/2:dx1:L1/2-dx1; %source coords
[X1,Y1]=meshgrid(x1,x1);
% Grating field and irradiance
ul=1/2*(1-cos(2*pi*X1/P)).*rect(X1/D1).*rect(Y1/D1);
% Fraunhofer pattern
[u2,L2]=propFF(u1,L1,lambda,f);
dx2=L2/M;
x2=-L2/2:dx2:L2/2-dx2; y2=x2;%obs coords
I2=abs(u2).^2;
```


Gratings (Cosine Magnitude Example)

- The periodic function should be sampled adequately.
- The number of samples that span the periodic function (the length P) is:

$$
\# \text { samples } \operatorname{across} P=M \frac{P}{L_{1}}
$$

- In case of the cosine grating, $M P / L_{1}=5$ indicates that five samples span each cosine cycle (it is ok).
- At least two are required to satisfy the sampling theorem.
- The lens focal length is chosen as $f=0.5 \mathrm{~m}$.

Gratings (Cosine Magnitude Example)

- Figure 9 shows irradiance images of the source plane (I1) and the observation plane (I2) and an xaxis profile in the observation plane.
- The central feature is known as the zero order and the two side features are the -1 and +1 "first-order" peaks.

(b)

(c)

Fig. 9. Results for grating_cos: (a) source irradiance; (b) Fraunhofer irradance and (c) x-axis profile of Fraunhofer irradiance.

Gratings (Cosine Magnitude Example)

- To make sure the simulation is working properly, the results can be compared with the analytic expression for the Fraunhofer pattern.
- First, the Fourier transform of the source field is required:

$$
\begin{aligned}
\mathfrak{J}\left\{U_{1}\left(x_{1}, y_{1}\right)\right\}= & \frac{1}{2}\left[\delta\left(f_{X 1}, f_{Y 1}\right)-\frac{1}{2} \delta\left(f_{X 1}-\frac{1}{P}, f_{Y 1}\right)-\frac{1}{2} \delta\left(f_{X 1}+\frac{1}{P}, f_{Y 1}\right)\right] \\
& \otimes D_{1}^{2} \operatorname{sinc}\left(D_{1} f_{X 1}\right) \operatorname{sinc}\left(D_{1} f_{Y 1}\right) .
\end{aligned}
$$

- Then perform the convolution:

$$
\begin{aligned}
\mathfrak{J}\left\{U_{1}\left(x_{1}, y_{1}\right)\right\}= & \frac{D_{1}^{2}}{2} \operatorname{sinc}\left(D_{1} f_{Y 1}\right) \\
& \times\left\{\operatorname{sinc}\left(D_{1} f_{X 1}\right)-\frac{1}{2} \operatorname{sinc}\left[D_{1}\left(f_{X 1}+\frac{1}{P}\right)\right]-\frac{1}{2} \operatorname{sinc}\left[D_{1}\left(f_{X 1}-\frac{1}{P}\right)\right]\right\} .
\end{aligned}
$$

Gratings (Cosine Magnitude Example)

- Substitute $x_{2} / \lambda z=f_{X 1}$ and $y_{2} / \lambda z=f_{Y 1}$ and apply the multipliers to get the Fraunhofer field:

$$
\begin{align*}
U_{2}\left(x_{2}, y_{2}\right)= & \frac{\exp (j k z)}{j \lambda z} \exp \left[j \frac{k}{2 z}\left(x_{2}^{2}+y_{2}^{2}\right)\right] \frac{D_{1}^{2}}{2} \operatorname{sinc}\left(\frac{D_{1}}{\lambda z} y_{2}\right) \\
& \times\left\{\operatorname{sinc}\left(\frac{D_{1}}{\lambda z} x_{2}\right)-\frac{1}{2} \operatorname{sinc}\left[\frac{D_{1}}{\lambda z}\left(x_{2}+\frac{\lambda z}{P}\right)\right]-\frac{1}{2} \operatorname{sinc}\left[\frac{D_{1}}{\lambda z}\left(x_{2}-\frac{\lambda z}{P}\right)\right]\right\} . \tag{9}
\end{align*}
$$

- The irradiance is the squared magnitude of Eq. (9).
- The following script portion evaluates the analytic irradiance result:

```
%analytic
[X2,Y2]=meshgrid(x2,y2);
lz=lambda*z;
u2a=(1/lz)*D1^2/2*sinc(D1/lz*Y2)...
    .*(sinc(D1/lz*X2)-1/2*sinc(D1/lz*(X2+lz/P))...
    -1/2*sinc(D1/lz*(X2-1z/P)));
I2a=abs (u2a).^2;
```


Gratings (Cosine Magnitude Example)

- The front complex exponential terms for the Fraunhofer pattern were not coded up since only the irradiance is being examined-don't forget $1 / \lambda z$.
- Try this and see if the discrete and analytic plots come out the same.
- The main application for a grating is wavelength separation.

Gratings (Cosine Magnitude Example)

- Figure 10 shows superimposed curves for $\lambda=$ $0.5 \mu \mathrm{~m}$ and $\lambda=0.6 \mu \mathrm{~m}$.
- The first-order peaks are clearly separated.

Fig. 10. Irradiance profiles for grating_cos.

