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Chapter 2
Scalar Diffraction and
Propagation Solutions
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A monochromatic (single-frequency) scalar field
propagating in free space can be expressed as

u(P.t)=A(P)cos|2nvi—(P)]. (1)

where A(P) is the amplitude and ¢(P) is the phase
at a position P in space (x, y, z coordinates) and v is
the temporal frequency.

This expression models a propagating transverse
optical (electric) field of a single polarization.

Monochromatic light provides the basis for
analysis of diffraction theory.

A truly monochromatic light source is coherent.
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* To give an example, a specific form of Eq. (1)
corresponding to a plane wave propagating in the
z direction would be

u(z.t)=Acos| 2nve—kz}.
* where the wavenumber k is defined as
L
 where A is the vacuum @avelength.

 v=c/A, where cis the speed of light in vacuum.

* The speed c can be derived from the argument (or
phase) in the cos function.

* This wave has no dependence on x and y and is
treated as extending infinitely in these directions.



Monochromatic Fields and Irradiance

If the field in Eq. (1) is propagating in a linear
medium (assumed for scalar diffraction), the
temporal frequency of the resulting field will
remain unchanged: we don’t need to consider the
temporal term.

Furthermore, substituting a complex exponential
(phasor) form for the cosine function provides a
valid propagation result and aids in mathematical
manipulation.
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 These changes lead to a function that simply
describes the spatial distribution of the field

U(P) = A(P)exp|j#(P)]. (2)

* To further refine Eq. (2), the dependence on the z
position can be removed, where z is assumed to
be the fundamental propagation direction.

o Uxy)=4xyexpliglx.y)]. indicates the field in the x—
y plane is located at some position “1” on z axis.



Monochromatic Fields and Irradiance

e Detectors cannot follow the extremely high-
frequency oscillations (>10'* Hz: temporal
frequency) of the optical electric field.

* Instead, optical detectors respond to the time-
averaged squared magnitude of the field.

* A quantity of considerable interest is the
irradiance, which is defined here as (refer to
Poynting theorem (see Schaum's Outline Optics))

L (%, p)=Uke, y W%, ) = ‘[Fl{n'. J'j‘: . (3)

* Expression (3) actually represents a shortcut for
determining the time-averaged square magnitude
of the field and is valid when the field is modeled
by a complex phasor.




Optical Path Length and Field Phase ++-
Representation

* The refractive index n of a medium is the ratio of
the speed of light in vacuum to the speed in the
medium: for example, a typical glass used for
visible light might have an index of about 1.6.

* For light propagating a distance d in a medium of
index n, the optical path length (OPL) is defined:

OPL=nd .



Optical Path Length and Field Phase +4-
Representation

 The OPL multiplied by the wavenumber k shows

up in the phase of the complex exponential used
to model the optical field.

* If the plane wave propagates a distance d through
a piece of glass with index n, then the field phasor
representation is

U(d) = Aexpljknd).

* The wavelength shortens to A/n in the glass
(temporal frequency remain same).
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* Consider the propagation of monochromatic light
from a 2D plane (source plane) indicated by the

coordinate variables ¢ and n.
X
4 |
Observation Plane

Source Plane
Ui(& n)

At the source plane, an area X defines the extent
of a source or an illuminated aperture.




Analytic Diffraction Solutions

e The field distribution in the source plane is given

by U,(§, n), and the field U,(x, y) in a distant

observation plane can be predicted using the

Rayleigh—-Sommerfeld diffraction solution.

U,(x.y) = f;jjg Ui(s.7)
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Analytic Diffraction Solutions .

* Aisthe optical wavelength, k is the wavenumber,
which is equal to 2m/A for free space, z is the
distance between the centers of the source and
observation coordinate systems and ry, is the
distance between a position on the source plane
and a position in the observation plane.

exp(ji7, )

U.(xv)=— [tz dedn. 4
_( ,1} j;’_!!:‘ 1{_ 7}"] -7} ()

i

k2

* ¢£and n are variables of integration, and the
integral limits correspond to the area of the
source 2.

* With the source and observation positions defined
on parallel planes, the distance r, is

L Vs m':l-'] +(x— ;fll +(yv—n ¥ (4_1)
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Expression (4) is a statement of the Huygens—
Fresnel principle.

* This principle supposes the source acts as an

infinite collection of fictitious point sources, each
producing a spherical wave associated with the
actual source field at any position (¢, n).

The contributions of these spherical waves are
summed at the observation position (x, y),
allowing for interference.
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Analytic Diffraction Solutions

* Expression (4) is, in general, a superposition
integral, but with the source and observation
areas defined on parallel planes, it becomes a

convolution integral, which can be written as

U,(x.v) = jjﬂts’l{;".f?'}h{.x' —E.y—n)dé&dn,

 where the general form of the Rayleigh—

Sommerfeld impulse response is

= expl jkr) =

h(x,v)=—
7
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Analytic Diffraction Solutions 1T
The Fourier convolution theorem is applied to
write Eqg. (5) as
. (x.0) =3 1,.;5}L (x; 1)}djf!(‘t 1) (6)
An equivalent expression for Eq. (6) is
U (. 9)="3" {51, (x; 1)}H(}" FL,
where H is the Rayleigh—-Sommerfeld transfer
function given by
H(fy.fy)= exp[i Jhz *'u"ll.l —(Hx ) - (Afy }2 \| : (7)

Strictly speaking, /:+/f’ <1/2 must be satisfied
for propagating field components.
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Analytic Diffraction Solutions 44

* The Rayleigh—-Sommerfeld expression is the most
accurate diffraction solution.

e Other than the assumption of scalar diffraction,
this solution only requires that r >> A (refer to
green theory), the distance between the source
and the observation position, be much greater
than a wavelength.
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Fresnel Approximation 1T
The square root in the distance terms can make
analytic manipulations of the Rayleigh—
Sommerfeld solution difficult and add execution
time to a computational simulation.
By approximations for these terms, a more
convenient scalar diffraction form is obtained.
Consider the binomial expansion
Ea T W X (8)
R s > 3 -

where b is a number less than 1, then expand Eq.
(4-1) and keep the first two terms to yield

1(x—-&Y 1(y-nY
;‘132{14“:'11 I QTR HJ :

2

-—
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Fresnel Approximation coo

* This approximation is applied to the distance term
in the phase of the exponential in Eq. (4), which
amounts to assuming a parabolic radiation wave
rather than a spherical wave.

* Furthermore, use the approximation r,, ~ zin the

denominator of Eq. (4) to arrive at the Fresnel
diffraction expression:

Jkz |

.f%[{l‘ ~ &Y +(y —f}'lzl}(f:dﬁ .

([, (&.m)exp:
JAz °¢ l

Us(x.y)=
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Fresnel Approximation cos

* This expression is also a convolution, where the
impulse response is

Jiz ‘7
h(x,y)= E} - E‘Kp{ﬂ{l‘z T )}
JjAz 2z

e and the transfer function is

H(fy. fy) =" exp| jmaz(f3+ 17)].
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Fresnel Approximation 13
* Another useful form of the Fresnel diffraction

expression is obtained by moving the quadratic

phase term that is a function of x and y outside

the integrals:

E»‘E(.‘tﬁj'}—mfkp jit*{‘ +37)

JAZ { 2z } (9)

X H{Ul (&, f?)exl{j%(éfl +n° )He?ip {—f%(rf + 37 )}'?ﬂ’f;-
Along with the amplitude and chirp multiplicative
factors out front, this expression is a Fourier
transform of the source field times a chirp
function where the following frequency variable
substitutions are used for the transform:

X
L —. —>
f’ Az f Az
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Fraunhofer Approximation 13
* Fraunhofer diffraction (diffraction patterns in
“far field”) can be obtained mathematically by
approximating the chirp term multiplying the
initial field within the integrals of Eq. (9) as unity.
 The assumption involved is
2 T
Z>>(k(‘: +7 )J ’ (10)
2 max
 The Fraunhofer diffraction expression
U2<x,y)=%ﬂ‘z)exp[j§(xz +y2>}<
JAZ Z (11)

[[u.m exp[—j%(xé + yn)}dédn-
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Fraunhofer Approximation

The condition of Eq. (10) requires very long
propagation distances relative to the source
support size.

Form of the Fraunhofer pattern also appears in
the propagation analysis involving lenses.

The Fraunhofer diffraction expression is a
powerful tool for many applications such as laser
beam propagation, image analysis, and
microscopy.

The Fraunhofer expression can be recognized
simply as a Fourier transform of the source field

with the variable substitutions:

X y
f,:' _>,-._‘f f,r; _>:_ .
AZ AZ

(11-1)
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Fraunhofer Approximation

* The Fraunhofer expression cannot be written as a

convolution integral (no impulse response or
transfer function).

Scaled version of the Fourier transform of the

initial field.
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Fraunhofer Diffraction Example .
* Consider a circular aperture illuminated by a unit
amplitude plane wave.
* The complex field immediately beyond the
aperture plane is
3 | 52 +f']:
U, ;,1}):1311‘(:{ - ] (12)
W

 To find the Fraunhofer diffraction field, the
Fourier transform is taken as

Sy (2w 12+ 1)

w f_z +fn2

U (&} =w’




Fraunhofer Diffraction Example

* Using Eq. (11), the field is expressed by:

U,(x,y)= —exp(ﬁjkz-) exp[jzi(x2 + 57 )J

jAz =
w " "
JI 27[:.4—\/.1’-‘{'*1?-
2 AZ
X W 2
w 2 2
e 6 +.V
AZ

e The irradiance is

[ ]

W -
) \2 J1[2:rtﬂ1}x2 -l—y'J
w- AZ
L(x,y)=| = -
/L_Z 1'1 2 >

—Jx*+y°
NZ

(13)
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Fraunhofer Diffraction Example

* Let’s exercise MATLAB to display this irradiance

pattern.

* Suppose w=1mm, A =0.633um (He—Ne laser

wavelength), z=50m, and L = 0.2 m.

O ~N OO ok W N -

[ S - = U S S S { o]
~N o bk WN O

sitraun circ — Fraunhafer irradiance plot
1=0.2; 3side length (m)

M=250; $# samples

dx=L/M; $sample interval

x=-L/2:dx:L/2-dx; y=x; $%coords
[X,Y]=meshgrid(x,Vy);

w=1le-3; $x half-width
lambda=0.633e-6; swavelength
z=50; sprop distance

k=2*pi/lambda; %wavenumber
lz=lambda*z;

$irradiance

T2=(WhZ 1 7) 2. % Jihs e/ Lt aget (L. 224272 )Y . B2}

For jinc(), see the page 28.
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Fraunhofer Diffraction Example

18
19
20
2
22
23

figure (1) $irradiance 1image
imagesc (%, y,nthroot (12,3));
xlabel ("x (m)'); ylabel('y (m)");
colormap (*gray") ;

axis square;

axils XVv;

24
25 figure(2) $x—axis profile
26 plot(x,I2M/2+1,:2)):
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Fig. 1 Fraunhofer irradiance (a) image pattern and
(b) x-axis profile for a circular aperture.

This is known as the Airy pattern.

27 xlabel ("x(m)"'); ylabel ('Irradiance');
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Fraunhofer Diffraction Example

* Itis helpful to make a function that handles the
Bessel function ratio.

* In a New M-file (named “jinc”) enter the following:

function[outl=jinc(x):

% jinc function

o

$ J1l(2*pi*x) /x

% divide by zero fix

o
]

M o= o kW k=

% locate non—-zero elements of X

mask=(x~=0);

$ initialize output with pi (value for x=0)
out=pil*ones(size(x)):

% compute output walues for all other x

out (mask)=bessel] (1,2*pi*x(mask)) ./ (x(mask));
end

P T s e Tt ] ]
B T R =]
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