Optical Signal Processing

Prof. Inkyu Moon
Dept. of Robotics Engineering, DGIST

Chapter 2
 Scalar Diffraction and Propagation Solutions

Monochromatic Fields and Irradiance

- A monochromatic (single-frequency) scalar field propagating in free space can be expressed as

$$
\begin{equation*}
u(P, t)=A(P) \cos [2 \pi v t-\varphi(P)] \tag{1}
\end{equation*}
$$

- where $A(P)$ is the amplitude and $\varphi(P)$ is the phase at a position P in space (x, y, z coordinates) and v is the temporal frequency.
- This expression models a propagating transverse optical (electric) field of a single polarization.
- Monochromatic light provides the basis for analysis of diffraction theory.
- A truly monochromatic light source is coherent.

Monochromatic Fields and Irradiance

- To give an example, a specific form of Eq. (1) corresponding to a plane wave propagating in the z direction would be

$$
u(z, t)=A \cos [2 \pi v t-k z],
$$

- where the wavenumber k is defined as

$$
k=\frac{2 \pi}{\lambda},
$$

- where λ is the vacuum wavelength.
- $v=c / \lambda$, where c is the speed of light in vacuum.
- The speed c can be derived from the argument (or phase) in the cos function.
- This wave has no dependence on x and y and is treated as extending infinitely in these directions.

Monochromatic Fields and Irradiance

- If the field in Eq. (1) is propagating in a linear medium (assumed for scalar diffraction), the temporal frequency of the resulting field will remain unchanged: we don't need to consider the temporal term.
- Furthermore, substituting a complex exponential (phasor) form for the cosine function provides a valid propagation result and aids in mathematical manipulation.

Monochromatic Fields and Irradiance

- These changes lead to a function that simply describes the spatial distribution of the field

$$
\begin{equation*}
U(P)=A(P) \exp [j \phi(P)] . \tag{2}
\end{equation*}
$$

- To further refine Eq. (2), the dependence on the z position can be removed, where z is assumed to be the fundamental propagation direction.
- $U_{1}(x, y)=A_{1}(x, y) \exp \left[\phi_{1}(x, y)\right]$, indicates the field in the $x-$ y plane is located at some position " 1 " on z axis.

Monochromatic Fields and Irradiance

- Detectors cannot follow the extremely highfrequency oscillations ($>10^{14} \mathrm{~Hz}$: temporal frequency) of the optical electric field.
- Instead, optical detectors respond to the timeaveraged squared magnitude of the field.
- A quantity of considerable interest is the irradiance, which is defined here as (refer to Poynting theorem (see Schaum's Outline Optics))

$$
\begin{equation*}
I_{1}(x, y)=U_{1}(x, y) U_{1}(x, y)^{*}=\left|U_{1}(x, y)\right|^{2} . \tag{3}
\end{equation*}
$$

- Expression (3) actually represents a shortcut for determining the time-averaged square magnitude of the field and is valid when the field is modeled by a complex phasor.

Optical Path Length and Field Phase Representation

- The refractive index n of a medium is the ratio of the speed of light in vacuum to the speed in the medium: for example, a typical glass used for visible light might have an index of about 1.6.
- For light propagating a distance d in a medium of index n, the optical path length (OPL) is defined:

$$
\mathrm{OPL}=n d .
$$

Optical Path Length and Field Phase Representation

- The OPL multiplied by the wavenumber k shows up in the phase of the complex exponential used to model the optical field.
- If the plane wave propagates a distance d through a piece of glass with index n, then the field phasor representation is

$$
U(d)=A \exp (j k n d)
$$

- The wavelength shortens to λ / n in the glass (temporal frequency remain same).

Analytic Diffraction Solutions

- Consider the propagation of monochromatic light from a 2D plane (source plane) indicated by the coordinate variables ξ and η.

- At the source plane, an area Σ defines the extent of a source or an illuminated aperture.

Analytic Diffraction Solutions

- The field distribution in the source plane is given by $U_{1}(\xi, \eta)$, and the field $U_{2}(x, y)$ in a distant observation plane can be predicted using the Rayleigh-Sommerfeld diffraction solution.

$$
\begin{equation*}
U_{2}(x, y)=\frac{z}{j \lambda} \iint_{\Sigma} U_{1}(\xi, \eta) \frac{\exp \left(j k r_{12}\right)}{r_{12}^{2}} d \xi d \eta . \tag{4}
\end{equation*}
$$

Analytic Diffraction Solutions

- λ is the optical wavelength, k is the wavenumber, which is equal to $2 \pi / \lambda$ for free space, z is the distance between the centers of the source and observation coordinate systems and r_{12} is the distance between a position on the source plane and a position in the observation plane.

$$
\begin{equation*}
U_{2}(x, y)=\frac{z}{j \lambda} \iint_{\Sigma} U_{1}(\xi, \eta) \frac{\exp \left(j k r_{12}\right)}{r_{12}^{2}} d \xi d \eta . \tag{4}
\end{equation*}
$$

- $\quad \xi$ and η are variables of integration, and the integral limits correspond to the area of the source Σ.
- With the source and observation positions defined on parallel planes, the distance r_{12} is

$$
\begin{equation*}
r_{12}=\sqrt{z^{2}+(x-\xi)^{2}+(y-\eta)^{2}} . \tag{4-1}
\end{equation*}
$$

Analytic Diffraction Solutions

- Expression (4) is a statement of the HuygensFresnel principle.
- This principle supposes the source acts as an infinite collection of fictitious point sources, each producing a spherical wave associated with the actual source field at any position (ξ, η).
- The contributions of these spherical waves are summed at the observation position (x, y), allowing for interference.

Analytic Diffraction Solutions

- Expression (4) is, in general, a superposition integral, but with the source and observation areas defined on parallel planes, it becomes a convolution integral, which can be written as

$$
\begin{equation*}
U_{2}(x, y)=\iint U_{1}(\xi, \eta) h(x-\xi, y-\eta) d \xi d \eta, \tag{5}
\end{equation*}
$$

- where the general form of the RayleighSommerfeld impulse response is

$$
h(x, y)=\frac{z}{j \lambda} \frac{\exp (j k r)}{r^{2}}, \quad r=\sqrt{z^{2}+x^{2}+y^{2}} .
$$

Analytic Diffraction Solutions

- The Fourier convolution theorem is applied to write Eq. (5) as

$$
\begin{equation*}
U_{2}(x, y)=\mathfrak{J}^{-1}\left\{\mathfrak{S}_{\{ }\left\{U_{1}(x, y)\right\} \Im\{h(x, y)\}\right\} . \tag{6}
\end{equation*}
$$

- An equivalent expression for Eq. (6) is

$$
U_{2}(x, y)=\mathfrak{J}^{-1}\left\{\left\{\mathfrak{J}_{1}\left(U_{1}(x, y)\right\} H\left(f_{X}, f_{Y}\right)\right\},\right.
$$

- where H is the Rayleigh-Sommerfeld transfer function given by

$$
\begin{equation*}
H\left(f_{X}, f_{Y}\right)=\exp \left(j k z \sqrt{1-\left(\lambda f_{X}\right)^{2}-\left(\lambda f_{Y}\right)^{2}}\right) \tag{7}
\end{equation*}
$$

- Strictly speaking, $\sqrt{f_{X}^{2}+f_{Y}^{2}}<1 / \lambda$ must be satisfied for propagating field components.

Analytic Diffraction Solutions

- The Rayleigh-Sommerfeld expression is the most accurate diffraction solution.
- Other than the assumption of scalar diffraction, this solution only requires that $r \gg \lambda$ (refer to green theory), the distance between the source and the observation position, be much greater than a wavelength.

Fresnel Approximation

- The square root in the distance terms can make analytic manipulations of the RayleighSommerfeld solution difficult and add execution time to a computational simulation.
- By approximations for these terms, a more convenient scalar diffraction form is obtained.
- Consider the binomial expansion

$$
\begin{equation*}
\sqrt{1+b}=1+\frac{1}{2} b-\frac{1}{8} b^{2}+\ldots, \tag{8}
\end{equation*}
$$

- where b is a number less than 1 , then expand Eq. $(4-1)$ and keep the first two terms to yield

$$
r_{12} \approx=\left[1+\frac{1}{2}\left(\frac{x-\xi}{z}\right)^{2}+\frac{1}{2}\left(\frac{y-\eta}{z}\right)^{2}\right] .
$$

Fresnel Approximation

- This approximation is applied to the distance term in the phase of the exponential in Eq. (4), which amounts to assuming a parabolic radiation wave rather than a spherical wave.
- Furthermore, use the approximation $r_{12} \approx z$ in the denominator of Eq. (4) to arrive at the Fresnel diffraction expression:

$$
U_{2}(x, y)=\frac{e^{j k z}}{j \lambda z} \iint U_{1}(\xi, \eta) \exp \left\{j \frac{k}{2 z}\left[(x-\xi)^{2}+(y-\eta)^{2}\right]\right\} d \xi d \eta .
$$

Fresnel Approximation

- This expression is also a convolution, where the impulse response is

$$
h(x, y)=\frac{e^{j k z}}{j \lambda z} \exp \left[\frac{j k}{2 z}\left(x^{2}+y^{2}\right)\right],
$$

- and the transfer function is

$$
H\left(f_{X}, f_{Y}\right)=e^{j k} \exp \left[j \pi \lambda z\left(f_{X}^{2}+f_{Y}^{2}\right)\right] .
$$

Fresnel Approximation

- Another useful form of the Fresnel diffraction expression is obtained by moving the quadratic phase term that is a function of x and y outside the integrals:

$$
\begin{align*}
U_{2}(x, y)= & \frac{\exp (j k z)}{j \lambda z} \exp \left[j \frac{k}{2 z}\left(x^{2}+y^{2}\right)\right] \tag{9}\\
& \times \iint\left\{U_{1}(\xi, \eta) \exp \left[j \frac{k}{2 z}\left(\xi^{2}+\eta^{2}\right)\right]\right\} \exp \left[-j \frac{2 \pi}{\lambda z}(x \xi+y \eta)\right] d \xi d \eta
\end{align*}
$$

- Along with the amplitude and chirp multiplicative factors out front, this expression is a Fourier transform of the source field times a chirp function where the following frequency variable substitutions are used for the transform:

$$
f_{\xi} \rightarrow \frac{x}{\lambda z}, \quad f_{\eta} \rightarrow \frac{y}{\lambda z} .
$$

Fraunhofer Approximation

- Fraunhofer diffraction (diffraction patterns in "far field") can be obtained mathematically by approximating the chirp term multiplying the initial field within the integrals of Eq. (9) as unity.
- The assumption involved is

$$
\begin{equation*}
z \gg\left(\frac{k\left(\xi^{2}+\eta^{2}\right)}{2}\right)_{\max }, \tag{10}
\end{equation*}
$$

- The Fraunhofer diffraction expression

$$
\begin{align*}
U_{2}(x, y)= & \frac{\exp (j k z)}{j \lambda z} \exp \left[j \frac{k}{2 z}\left(x^{2}+y^{2}\right)\right] \times \tag{11}\\
& \iint U_{1}(\xi, \eta) \exp \left[-j \frac{2 \pi}{\lambda z}(x \xi+y \eta)\right] d \xi d \eta
\end{align*}
$$

Fraunhofer Approximation

- The condition of Eq. (10) requires very long propagation distances relative to the source support size.
- Form of the Fraunhofer pattern also appears in the propagation analysis involving lenses.
- The Fraunhofer diffraction expression is a powerful tool for many applications such as laser beam propagation, image analysis, and microscopy.
- The Fraunhofer expression can be recognized simply as a Fourier transform of the source field with the variable substitutions:

$$
\begin{equation*}
f_{\xi} \rightarrow \frac{x}{\lambda z}, \quad f_{\eta} \rightarrow \frac{y}{\lambda z} . \tag{11-1}
\end{equation*}
$$

Fraunhofer Approximation

- The Fraunhofer expression cannot be written as a convolution integral (no impulse response or transfer function).
- Scaled version of the Fourier transform of the initial field.

Fraunhofer Diffraction Example

- Consider a circular aperture illuminated by a unit amplitude plane wave.
- The complex field immediately beyond the aperture plane is

$$
\begin{equation*}
U_{1}(\xi, \eta)=\operatorname{circ}\left(\frac{\sqrt{\xi^{2}+\eta^{2}}}{w}\right) . \tag{12}
\end{equation*}
$$

- To find the Fraunhofer diffraction field, the Fourier transform is taken as

$$
\mathfrak{J}\left\{U_{1}(\xi, \eta)\right\}=w^{2} \frac{J_{1}\left(2 \pi w \sqrt{f_{\xi}^{2}+f_{\eta}^{2}}\right)}{w \sqrt{f_{\xi}^{2}+f_{\eta}^{2}}} .
$$

Fraunhofer Diffraction Example

- Using Eq. (11), the field is expressed by:

$$
\begin{align*}
U_{2}(x, y)= & \frac{\exp (j k z)}{j \lambda z} \exp \left(j \frac{k}{2 z}\left(x^{2}+y^{2}\right)\right) \\
& \times w^{2} \frac{J_{1}\left(2 \pi \frac{w}{\lambda z} \sqrt{x^{2}+y^{2}}\right)}{\frac{w}{\lambda z} \sqrt{x^{2}+y^{2}}} . \tag{13}
\end{align*}
$$

- The irradiance is

$$
I_{2}(x, y)=\left(\frac{w^{2}}{\lambda z}\right)^{2}\left[\frac{J_{1}\left(2 \pi \frac{w}{\lambda z} \sqrt{x^{2}+y^{2}}\right)}{\frac{w}{\lambda z} \sqrt{x^{2}+y^{2}}}\right]^{2} .
$$

Fraunhofer Diffraction Example

- Let's exercise MATLAB to display this irradiance pattern.
- Suppose $w=1 \mathrm{~mm}, \lambda=0.633 \mu \mathrm{~m}$ (He-Ne laser wavelength), $z=50 \mathrm{~m}$, and $L=0.2 \mathrm{~m}$.

```
%fraun_circ - Fraunhofer irradiance plot
L=0.2; %side length (m)
M=250; %# samples
dx=L/M; %sample interval
x=-L/2:dx:L/2-dx; y=x; %coords
[X,Y]=meshgrid(x,Y);
w=1e-3; %x half-width
lambda=0.633e-6;%wavelength
z=50; %prop distance
k=2*pi/lambda; %wavenumber
lz=lambda*z;
%irradiance
I2=(w^2/lz)^2.*(jinc(w/lz*sqrt(X.^2+Y.^2))).^2;
For jinc(), see the page 28.
```


Fraunhofer Diffraction Example

figure(1) %irradiance image
figure(1) %irradiance image
imagesc(x,y,nthroot(I2,3));
imagesc(x,y,nthroot(I2,3));
xlabel('x (m)'); ylabel('y (m)');
xlabel('x (m)'); ylabel('y (m)');
colormap('gray');
colormap('gray');
axis square;
axis square;
axis xy;
axis xy;

(a)

(b)

- Fig. 1 Fraunhofer irradiance (a) image pattern and (b) x-axis profile for a circular aperture.
- This is known as the Airy pattern.

Fraunhofer Diffraction Example

- It is helpful to make a function that handles the Bessel function ratio.
- In a New M-file (named "jinc") enter the following:

```
function[out]=jinc(x);
%
jinc function
%
% J1 (2*pi*x) / X
% divide by zero fix
%
% locate non-zero elements of x
mask=(x~=0);
% initialize output with pi (value for x=0)
out=pi*ones(size(x));
% compute output values for all other x
out(mask)=besselj (1, 2*pi*x(mask))./(x(mask));
end
```

