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Chapter 2
Scalar Diffraction and 
Propagation Solutions



Monochromatic Fields and Irradiance

• A monochromatic (single-frequency) scalar field 
propagating in free space can be expressed as

• where A(P) is the amplitude and φ(P) is the phase 
at a position P in space (x, y, z coordinates) and ν is 
the temporal frequency.

• This expression models a propagating transverse 
optical (electric) field of a single polarization.

• Monochromatic light provides the basis for 
analysis of diffraction theory. 

• A truly monochromatic light source is coherent.

(1)
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Monochromatic Fields and Irradiance

• To give an example, a specific form of Eq. (1) 
corresponding to a plane wave propagating in the 
z direction would be

• where the wavenumber k is defined as

• where λ is the vacuum wavelength. 
• ν = c/λ , where c is the speed of light in vacuum.
• The speed c can be derived from the argument (or 

phase) in the cos function. 
• This wave has no dependence on x and y and is 

treated as extending infinitely in these directions.
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Monochromatic Fields and Irradiance

• If the field in Eq. (1) is propagating in a linear 
medium (assumed for scalar diffraction), the 
temporal frequency of the resulting field will 
remain unchanged: we don’t need to consider the 
temporal term. 

• Furthermore, substituting a complex exponential 
(phasor) form for the cosine function provides a 
valid propagation result and aids in mathematical 
manipulation. 
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Monochromatic Fields and Irradiance

• These changes lead to a function that simply 
describes the spatial distribution of the field

• To further refine Eq. (2), the dependence on the z 
position can be removed, where z is assumed to 
be the fundamental propagation direction. 

• indicates the field in the x–
y plane is located at some position “1” on z axis.

(2)
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Monochromatic Fields and Irradiance

• Detectors cannot follow the extremely high-
frequency oscillations (>1014 Hz: temporal 
frequency) of the optical electric field. 

• Instead, optical detectors respond to the time-
averaged squared magnitude of the field.

• A quantity of considerable interest is the 
irradiance, which is defined here as (refer to 
Poynting theorem (see Schaum's Outline Optics))

• Expression (3) actually represents a shortcut for 
determining the time-averaged square magnitude 
of the field and is valid when the field is modeled 
by a complex phasor.

(3)
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Optical Path Length and Field Phase 
Representation

• The refractive index n of a medium is the ratio of 
the speed of light in vacuum to the speed in the 
medium: for example, a typical glass used for 
visible light might have an index of about 1.6. 

• For light propagating a distance d in a medium of 
index n, the optical path length (OPL) is defined:
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Optical Path Length and Field Phase 
Representation

• The OPL multiplied by the wavenumber k shows 
up in the phase of the complex exponential used 
to model the optical field.

• If the plane wave propagates a distance d through 
a piece of glass with index n, then the field phasor 
representation is

• The wavelength shortens to λ/n in the glass 
(temporal frequency remain same).
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Analytic Diffraction Solutions

• Consider the propagation of monochromatic light 
from a 2D plane (source plane) indicated by the 
coordinate variables ξ and η.

• At the source plane, an area Σ defines the extent 
of a source or an illuminated aperture. 
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Analytic Diffraction Solutions

• The field distribution in the source plane is given 
by U1(ξ, η), and the field U2(x, y) in a distant 
observation plane can be predicted using the 
Rayleigh–Sommerfeld diffraction solution.

(4)
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Analytic Diffraction Solutions

• λ is the optical wavelength, k is the wavenumber, 
which is equal to 2π/λ for free space, z is the 
distance between the centers of the source and 
observation coordinate systems and r12 is the 
distance between a position on the source plane 
and a position in the observation plane. 

•  and  are variables of integration, and the 
integral limits correspond to the area of the 
source Σ.

• With the source and observation positions defined 
on parallel planes, the distance r12 is 

(4-1)

(4)
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Analytic Diffraction Solutions

• Expression (4) is a statement of the Huygens–
Fresnel principle. 

• This principle supposes the source acts as an 
infinite collection of fictitious point sources, each 
producing a spherical wave associated with the 
actual source field at any position (ξ, η). 

• The contributions of these spherical waves are 
summed at the observation position (x, y), 
allowing for interference.
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Analytic Diffraction Solutions

• Expression (4) is, in general, a superposition 
integral, but with the source and observation 
areas defined on parallel planes, it becomes a 
convolution integral, which can be written as

• where the general form of the Rayleigh–
Sommerfeld impulse response is 

(5)
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Analytic Diffraction Solutions

• The Fourier convolution theorem is applied to 
write Eq. (5) as

• An equivalent expression for Eq. (6) is

• where H is the Rayleigh–Sommerfeld transfer 
function given by

• Strictly speaking,                         must be satisfied 
for propagating field components. 

(6)

(7)
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Analytic Diffraction Solutions

• The Rayleigh–Sommerfeld expression is the most 
accurate diffraction solution. 

• Other than the assumption of scalar diffraction, 
this solution only requires that r >> λ (refer to 
green theory), the distance between the source 
and the observation position, be much greater 
than a wavelength.
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Fresnel Approximation

• The square root in the distance terms can make 
analytic manipulations of the Rayleigh–
Sommerfeld solution difficult and add execution 
time to a computational simulation. 

• By approximations for these terms, a more 
convenient scalar diffraction form is obtained. 

• Consider the binomial expansion

• where b is a number less than 1, then expand Eq. 
(4-1) and keep the first two terms to yield

(8)
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Fresnel Approximation

• This approximation is applied to the distance term 
in the phase of the exponential in Eq. (4), which 
amounts to assuming a parabolic radiation wave 
rather than a spherical wave.

• Furthermore, use the approximation r12  z in the 
denominator of Eq. (4) to arrive at the Fresnel 
diffraction expression:
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Fresnel Approximation

• This expression is also a convolution, where the 
impulse response is

• and the transfer function is
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Fresnel Approximation

• Another useful form of the Fresnel diffraction 
expression is obtained by moving the quadratic 
phase term that is a function of x and y outside 
the integrals:

• Along with the amplitude and chirp multiplicative 
factors out front, this expression is a Fourier 
transform of the source field times a chirp 
function where the following frequency variable 
substitutions are used for the transform:

(9)
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Fraunhofer Approximation

• Fraunhofer diffraction (diffraction patterns in 
“far field”) can be obtained mathematically by 
approximating the chirp term multiplying the 
initial field within the integrals of Eq. (9) as unity.

• The assumption involved is

• The Fraunhofer diffraction expression

(10)

(11)

21

2 2
2

1

exp( )
( , ) exp ( )

2

2
( , ) exp ( )

jkz k
U x y j x y

j z z

U j x y d d
z



     


     
    



Fraunhofer Approximation

• The condition of Eq. (10) requires very long 
propagation distances relative to the source 
support size.

• Form of the Fraunhofer pattern also appears in 
the propagation analysis involving lenses.

• The Fraunhofer diffraction expression is a 
powerful tool for many applications such as laser 
beam propagation, image analysis, and 
microscopy.

• The Fraunhofer expression can be recognized 
simply as a Fourier transform of the source field 
with the variable substitutions: 
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Fraunhofer Approximation

• The Fraunhofer expression cannot be written as a 
convolution integral (no impulse response or 
transfer function). 

• Scaled version of the Fourier transform of the 
initial field.
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Fraunhofer Diffraction Example

• Consider a circular aperture illuminated by a unit 
amplitude plane wave. 

• The complex field immediately beyond the 
aperture plane is

• To find the Fraunhofer diffraction field, the 
Fourier transform is taken as

(12)
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Fraunhofer Diffraction Example

• Using Eq. (11), the field is expressed by:  

• The irradiance is

(13)
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Fraunhofer Diffraction Example

• Let’s exercise MATLAB to display this irradiance 
pattern.

• Suppose w = 1mm,  = 0.633m (He–Ne laser 
wavelength), z = 50 m, and L = 0.2 m.
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Fraunhofer Diffraction Example

• Fig. 1 Fraunhofer irradiance (a) image pattern and 
(b) x-axis profile for a circular aperture. 

• This is known as the Airy pattern. 27



Fraunhofer Diffraction Example

• It is helpful to make a function that handles the 
Bessel function ratio.

• In a New M-file (named “jinc”) enter the following:
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