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• This course provides students with a basic 
understanding of the scientific principles 
associated with 1) Fourier optics, 2) image capture 
and formation, and 3) intelligent holographic 
imaging for numerous biomedical applications. 

• Digital holographic microscopy (DHM) is also 
introduced in this course for three-dimensional 
(3D) and quantitative sensing, imaging and 
measuring of biological and microscopic samples. 

Introduction

What is purpose? 

• Fourier analysis & Basic optics 
What are the prerequisites?
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• Foundation for most 3D imaging system & 
modeling of a digital holographic microscope

• For MS or Ph.D. examinations.

Introduction

Why are you in the class? 

• Midterm Exam: 40%
• Final Exams: 50%
• Homework/Class Participation: 10% 

Grading

• J. Goodman, Introduction to Fourier Optics, 
Mcgraw-Hill, USA 1996 

Reference
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Chapter 1
Fourier Theory Review



• The study of Optical Signal Processing today leads 
naturally toward the computer for the following 
reason: Fast Fourier transform (FFT) algorithm
provides an extremely efficient computational 
approach for solving wave optics problems.

• The FFT’s speed makes it possible to perform 
thousands of optical propagation or imaging 
simulations in a reasonable amount of time.

• The methods explored in this course form the 
basis for wave (or physical) optics simulation 
tools that are widely used in industry.

A Little History and Purpose
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• This course also provides step-by-step instructions 
for coding Fourier optics with MATLAB software. 

• The end of this course, you can program basic 
Fourier optics problems—at least that’s the goal!

• I encourage you to consult some references for 
basic Fourier theory. 

• Recommended reading: Schaums Outline of 
Digital Signal Processing

A Little History and Purpose
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• The unit impulse function (t) plays a central role 
in system analysis: It has the following properties:

• Thus, (t) cannot be an ordinary function and 
mathematically it is defined by

• where (t) is any function continuous at t = 0.
• Similarly, the delayed delta function (t-t0) is 

defined by

Linear Systems and Nonlinear 
Systems

Unit Impulse Function
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• The unit impulse (or unit sample) sequence [n] is 
defined:

• Similarly, the shifted unit impulse (or sample) 
sequence [n-k] is defined as

Linear Systems and Nonlinear 
Systems

Unit Impulse Sequence (n is an integer)
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• If the operator T satisfies the following two 
conditions, then T is called a linear operator and 
the system represented by a linear operator T is 
called a linear system:

1. Additivity
• Given that               and             then                            

for any signals and    .
2. Homogeneity
• for any signals x and any scalar . 
• Two equations                            and                    can 

be combined into a single condition as

Linear Systems and Nonlinear 
Systems

1x 2x

 1 1T x y  2 2T x y  1 2 1 2T x x y y  

 1 2 1 2T x x y y  

 T x y 

 T x y 

 1 1 2 2 1 1 2 2x x y y     T
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• A system is called time-invariant if a time shift 
(delay or advance) in the input signal causes the 
same time shift in the output signal. 

• For a continuous-time system, the system is time-
invariant if                              for any real value of  . 

• For a discrete-time system, the system is time-
invariant or shift-invariant if                                     
for any integer k. 

• A system which does not satisfy the above 
Equations is called a time-varying system. 

Time-Invariant and Time-Varying 
Systems

    x t y t   T

    x n k y n k  T
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• If the system is linear and time-invariant, then it 
is called a linear time-invariant (LTI) system.

• The input-output relationship for LTI systems is 
described in terms of a convolution operation. 

• The importance of the convolution operation in LTI 
systems stems from the fact that knowledge of the 
response of an LTI system to the unit impulse input 
allows us to find its output to any input signals. 

Linear Time-Invariant Systems
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A. Impulse Response
• The impulse response h(t) of a continuous-time LTI 

system (represented by T) is defined to be the 
response of the system when the input is (t):

B. Response to an Arbitrary Input
• The input x(t) can be expressed as

• Since the system is linear, the response y(t) of the 
system to the input x(t) can be expressed as

Response of Continuous-Time LTI 
System 
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• Since the system is time-invariant, we have

• Substituting Eq. (2) into Eq. (1), we obtain

• Equation (3) indicates that a continuous-time LTI 
system is completely characterized by its impulse 
response h(t).

Response of Continuous-Time LTI 
System 

(2)    h t t    T

     y t x h t d  



  (3)
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• Equation (3) defines the convolution of two 
continuous-time signals x(t) and h(t) denoted by

• Equation (4) is called the convolution integral. 
• The output of any continuous-time LTI system is 

the convolution of the input x(t) with the impulse 
response h(t) of the system.

Response of Continuous-Time LTI 
System 

(4)         y t x t h t x h t d  



   

14



A. Impulse Response
• The impulse response (or unit sample response) 

h[n] of a discrete-time LTI system (represented by 
T) is defined to be the response of the system 
when the input is δ[n], that is,

B. Response to an Arbitrary Input
• The input x[n] can be expressed as

• Since the system is linear, the response y[n] of the 
system to an input x[n] can be expressed as:

Response of a Discrete-Time LTI 
System

(6)
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• Since the system is time-invariant, we have

• Substituting Eq. (7) into Eq. (6), we obtain

• Equation (8) indicates that a discrete-time LTI 
system is completely characterized by its impulse 
response h[n].

Response of a Discrete-Time LTI 
System

(8)

(7)    h n k n k  T

     
k

y n x k h n k




 
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• Equation (8) defines the convolution of two 
sequences x[n] and h[n] denoted by

• Equation (9) is called the convolution sum. 
• The output of any discrete-time LTI system is the 

convolution of the input x[n] with the impulse 
response h[n] of the system.

Convolution Sum

(9)         
k

y n x n h n x k h n k




   
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• We know that the output y(t) of a continuous-time 
LTI system equals the convolution of the input x(t) 
with the impulse response h(t): that is,

• Applying the convolution property, we obtain

• where Y(ω), X(ω), and H(ω) are the Fourier 
transforms of y(t), x(t), and h(t), respectively. 

• H(ω) is called the system’s frequency response. 

Frequency Response of Continuous-
Time LTI Systems

     y t x t h t 

     Y X H  
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• The Fourier representation of signals plays an 
extremely important role in both continuous-time 
and discrete-time signal processing. 

• We review the continuous-time Fourier transform 
(FT) and the FT for discrete-time signals). 

• Review Fourier series and Fourier transform which 
convert time-domain signals into frequency-
domain (or spectral) representations.

Fourier Analysis of Signals
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• The complex exponential signal                is an 
important example of a complex signal. 

• The fundamental period      of        is given by:

• Any signals can be expressed by using the 
complex exponential form.

• The complex exponential sequence is of the form.

• Any sequences can be expressed by using the 
complex exponential form.

Complex Exponential Signals
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• We define a continuous-time signal x(t) to be 
periodic if there is a positive nonzero value of T for 
which

• Two basic examples of periodic signals are the real 
sinusoidal signal 

• and the complex exponential signal

• where                                 is called the fundamental 
angular frequency

Fourier Analysis of Continuous-Time 
Signals

Periodic Signals

   x t T x t all t 

   0cosx t t  

  0j tx t e 

0 0 02 2T f   
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• The complex exponential Fourier series 
representation of a periodic signal x(t) with 
fundamental period T0 is given by

• where ck are known as the complex Fourier 
coefficients and are given by

Fourier Analysis of Continuous-Time 
Signals

Complex Exponential Fourier Series Representation
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• The trigonometric Fourier series representation 
of a periodic signal x(t) with fundamental period 
T0, is given by:

• ak, and bk, are the Fourier coefficients given by:

Fourier Analysis of Continuous-Time 
Signals

Trigonometric Fourier Series
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• The average power of a periodic signal x(t) over 
any period is given by:

• If x(t) is represented by the complex exponential 
Fourier series, then it can be shown that

Fourier Analysis of Continuous-Time 
Signals

Power Content of a Periodic Signal
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• Let x(t) be a nonperiodic signal of finite duration:

• Let          be a periodic signal formed by repeating 
x(t) with fundamental period T0,

• If we let             , we have

Fourier Analysis of Continuous-Time 
Signals

From Fourier Series to Fourier Transform

0
( )Tx t

  10x t t T 

0T     
0

0

lim T
T

x t x t




25



• The complex exponential Fourier series of          is:

• where

• Since                  for              and also since       
outside this interval, Eq. (10a) can be rewritten as:

Fourier Analysis of Continuous-Time 
Signals
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• Let us define X() as

• The complex Fourier coefficients ck, can be 
expressed as

• Substituting Eq. (11a) into Eq. (10), we have

Fourier Analysis of Continuous-Time 
Signals
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• As                           becomes infinitesimal   
• Thus,               then Eq. (12) becomes

• Therefore,

Fourier Analysis of Continuous-Time 
Signals
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• The sum on the right-hand side of Eq. (14) can be 
viewed as the area under the function                 as 
shown in the following figure.

• Therefore, we obtain

• It’s the Fourier representation of a nonperiodic
x(t).

Fourier Analysis of Continuous-Time 
Signals

(15)
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• The function X() is called the Fourier transform 
of x(t), and Eq. (15) defines the inverse Fourier 
transform of X().

• If impulse functions are permitted in the 
transform, some periodic signals (i.e., sin(x), 
cos(x)) can have Fourier transforms.

Fourier Analysis of Continuous-Time 
Signals

Fourier Transform Pair
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• The Fourier transform X() of x(t) is, in general, 
complex, and it can be expressed as:

• The quantity           is called the magnitude 
spectrum of x(t), and          is called the phase 
spectrum of x(t).

• If x(t) is a real signal, we get
• Then it follows that

• The amplitude spectrum           is an even function 
and the phase spectrum         is an odd one of .

Fourier Analysis of Continuous-Time 
Signals

Fourier Spectra

     jX X e   
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    X X 

       X X         
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• A discrete-time signal (or sequence) x[n] is 
periodic if there is a positive integer N for which

• The fundamental period N0 of x[n] is the smallest 
positive integer N.

• The complex exponential sequence

• where                    , is a periodic sequence with 
fundamental period N0.

Discrete Fourier Series

0 02 / N 

   x n N x n all n 

   0 02j N n j nx n e e  
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• One very important distinction between the 
discrete-time and the continuous-time complex 
exponential is that the signals        are distinct for 
distinct values of       but the sequences         
which differ in frequency by a multiple of 2π, are 
identical.

• Let
• We have
• In case of                                                  because        

is always 1: note that k and n are integer.
• However, incase of                                                                    

are differ: note that t is not integer.

Discrete Fourier Series
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• The discrete Fourier series representation of a 
periodic sequence x[n] with fundamental period 
N0 is given by

• where ck are the Fourier coefficients and given by:

• The DFS coefficients are periodic.

Discrete Fourier Series
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Note that the range of k is [0 N0-1] (see page 33)



• Let x[n] be a nonperiodic sequence of finite 
duration: that is, for some positive integer N1,

• Such a sequence is shown in the following figure. 

• Let           be a periodic sequence formed by 
repeating x[n] with fundamental period N0 as 
shown in the following figure.

From Discrete Fourier Series to 
Fourier Transform (DTFT)

  10x n n N 

0
[ ]Nx n
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• If we let              , we have
• The discrete Fourier series of           is given by 

• Since                    for               and also since x[n]=0 
outside this interval, Eq. (17) can be rewritten as

• Let us define          as

From Discrete Fourier Series to 
Fourier Transform (DTFT)
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where n is [0,1,2,3,.. N0-1,…]  and fundamental angular frequency in 
is 0, exp[-jn] exp[-j0n]. So X() has 2π period (see page 33). 



• The Fourier coefficients ck can be expressed as:

• Substituting Eq. (18) into Eq. (16), we have

• is periodic with period 2π and so is       . 
• So, the product              is periodic with period 2π.

From Discrete Fourier Series to 
Fourier Transform (DTFT)
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• As shown in the following figure, each term in the 
summation in Eq. (19) represents the area of a 
rectangle of height                     and width     . 

From Discrete Fourier Series to 
Fourier Transform (DTFT)

0
0( ) jk nX k e  0
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• As             ,                   , becomes infinitesimal 
(           ) and Eq. (19) passes to an integral. 

• Furthermore, since the summation in Eq. (19) is 
over N0, consecutive intervals of width                  , 
the total interval of integration will always have a 
width 2π. 

• Thus, as               Eq. (19) becomes

From Discrete Fourier Series to 
Fourier Transform (DTFT)

0 02 / N 
0N 

0 0 

0 02 / N 

0N 

   
2

1

2
j nx n X e d


   (20)
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• The function X() is called the discrete-time 
Fourier transform (DTFT) of x[n], and equation (20) 
defines the inverse Fourier transform of X().

From Discrete Fourier Series to 
Fourier Transform (DTFT)

Fourier Transform Pair

      

      1

2

1

2

j n

n
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


 


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



F

F
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• The Fourier transform X() of x[n] is, in general, 
complex and can be expressed as:

• The quantity             is called the magnitude 
spectrum of x[n], and          is called the phase 
spectrum of x[n].

• Furthermore, if x[n] is real, the amplitude 
spectrum              is an even function and the 
phase spectrum           is an odd function.

From Discrete Fourier Series to 
Fourier Transform (DTFT)

Fourier Spectra

( )X 
( ) 

( )X 
( ) 

     jX X e    
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• The output y[n] of a discrete-time LTI system 
equals the convolution of the input x[n] with the 
impulse response h[n]; that is,

• Applying the convolution property, we obtain

• where Y(Ω), X(Ω), and H(Ω) are the Fourier 
transforms of y[n], x[n], and h[n], respectively.

• Unlike the frequency response of continuous-
time systems, that of all discrete-time LTI systems 
is periodic with period 2π. 

Frequency Response of Discrete-Time 
LTI Systems

     y n x n h n 

     Y X H   

   2H H   

42



• Most discrete-time signals come from sampling a 
continuous-time signal, such as speech, audio 
signals, radar, sonar data, and biological signals.

• Sampling theory gives precise conditions under 
which an analog signal may be uniquely 
represented in terms of its samples.

• When implementing holography simulations on 
the computer we need to represent functions by 
sampled values and apply transform/processing 
methods designed for these discrete signals. 

• It would be great to model the physical elements 
with many samples.

Sampling
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• Consider the two-dimensional (2D) analytic 
function g(x,y) and suppose it is sampled in a 
uniform manner (see Fig. 2.1) in the x and y 
directions, which is indicated by

Sampling

   , , .g x y g m x n y  
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• Sample interval is  Δx in the x direction and Δy in 
the y direction, and m and n are integer-valued 
indices of the samples: the respective sample
rates (sampling frequency) are 1/x and 1/y.

• In practice, the sampled space is finite and,
assuming it is composed of M × N samples in the
x and y directions, respectively, m and n are 
defined with the following values:

• This is a standard index arrangement where M and 
N are assumed to be even.

Sampling

,..., 1, ,..., 1.
2 2 2 2

M M N N
m n     
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• A finite physical area spanned by the sampled 
space, and this is given by LX× LY , where LX is the 
length along the x side of the sampled space and 
LY is the length along the y side (see Fig. 2.1). 

• They represent physical distances and are related 
to the sampling parameters by

• If DX is the support in the x direction and DY is the 
support in the y direction, then for the significant 
values of g(x,y) to be contained within the array 
requires

Sampling

, .X YL M x L N y   

, .X X Y YD L D L 
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• Another concern is whether the sample intervals 
are small enough to preserve features of g(x,y).

• If functions that are bandlimited, where the 
spectral content of the signal is limited to a finite 
range of frequencies, a continuous function can 
be recovered exactly from the samples if the 
sample interval is smaller than a specific value. 

Sampling
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• The Shannon–Nyquist sampling theorem, 
extended to two dimensions, states this 
requirement as:

• where BX is the bandwidth of the spectrum of the 
continuous function along the x direction and BY is 
the bandwidth along the y direction.

• Bandwidth is illustrated in Fig. 2.2(b).
• Violating Eq. (21) results in aliasing, in which 

undersampled high-frequency components in the 
signal are interpreted erroneously as low 
frequency content.

Sampling

1 1
,

2 2X Y

x y
B B

    (21)
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• Discrete-time signals are formed by periodically 
sampling a continuous-time signal

• The sample spacing Ts is the sampling period, and 
fs = 1/Ts is the sampling frequency in samples per 
second.

• The continuous-time signal is first multiplied by a 
periodic sequence of impulses,

• To form the sampled signal

Periodic Sampling

   a sx n x nT

   a s
n

s t t nT




 

         s a a a s s
n

x t x t s t x nT t nT




  
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• The sampled signal is converted into a discrete-
time signal by mapping the impulses that are 
spaced in time by Ts into a sequence x(n) where 
the sample values are indexed by the integer 
variable n:

• This process is illustrated in Fig. (b).

• The Fourier transform of              is          , so the 
Fourier transform of the sampled signal xs(t) is

Periodic Sampling

( )st nT  sjn Te 

   a sx n x nT

    sjn T
s a s

n

X j x nT e


 



   (1)
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• The Fourier transform of (t) is: 

• Because

• The Fourier transform of              is           .

Examples
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( )st nT  sjn Te 



• Another expression for            follows by noting 
that the Fourier transform of                           is

• where                   is the sampling frequency in 
radians per second.

• By multiplication property of Fourier transform,

• Note that the above equation is derived from the 
Fourier analysis of the continuous time signal 
(see pages 55 to 59).

Periodic Sampling

2 /s sT 

( )sX j

   a s
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s t t nT
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a s
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S j k
T

 
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   

         1 1

2
sjn T

s a s a a a s
n ks

X j x nT e X j S j X j jk
T

 
 

 

         
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• Finally, the discrete-time Fourier transform of x(n):   

• Comparing Eq. (1) with Eq. (2), it follows that:       
(if  in Eq.(2), set to Ts, Eqs (1) and (2) will be same)

• Thus,           is a frequency-scaled version of            ,
with the scaling defined by

• This scaling, which makes            periodic with a 
period of 2π, is a consequence of the time-scaling 
that occurs when xs(t) is converted to x(n).             
(In Eq. (3),     has 2 period)

Periodic Sampling

     j jn jn
a s
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X e x n e x nT e  
 
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  

    1 2
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k
X e X j X j j

T T T
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 




 
    

 


(2)

(3)

( )jX e  ( )sX j

( )jX e 

sT  
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 

Note that the range of  is [0 2π], 2π/Ts is sampling frequency 

 jX e  is periodic with period 2π (see page 37)



• If xa(t) is strictly bandlimited,

• Then xa(t) may be uniquely recovered from its 
sampled signal xs(t) if

• The frequency      is called the Nyquist frequency, 
and the minimum sampling frequency,              , is 
called the Nyquist rate.

Sampling Theorem

0

02s  

  00aX j    

0

2
2s

sT


   

FT of the continuous time signal

The DTFT of the sampled sequence x[n]
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Find the Fourier transform of the periodic impulse 
train of             :

• From the inverse Fourier transform definition, we 
have

• Changing t to -t, we obtain 

• Now interchanging t and , we get

• Since

Examples
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 F
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• We get the following duality property:

• We know that the Fourier transform of (t) is 1.
• Thus, by the duality property we get

• And, we know that
• We can derive the following equation: 

• Then we get  

Examples
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• We express periodic signal x(t) as

• Taking the Fourier transform of both sides and 
using Eq. (2) and the linearity property, we get

• The complex exponential Fourier series of          is 
given by: 

• The Fourier coefficients can be obtained since (t) 
is involved:

Examples
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• Finally, we get

• Thus, the Fourier transform of a unit impulse train 
is also a similar impulse train.

Examples
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• By convolution definition, we get

Examples: Convolution Calculation
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• We have seen how to represent a sequence in 
terms of a linear combination of complex 
exponentials using the discrete-time Fourier 
transform (DTFT).

• For finite-length sequences there is another 
representation, called the discrete Fourier 
transform (DFT).

• Unlike the DTFT, which is a continuous function of 
a continuous variable, ω, the DFT is a sequence 
that corresponds to samples of the DTFT. 

• Such a representation is very useful for digital 
computations.

Discrete Fourier Transform
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• The DFT may be easily developed from the 
discrete Fourier series for periodic sequences.

• Let x(n) be a finite-length sequence of length N
that is equal to zero outside the interval [0, N-1]. 

• A periodic sequence          may be formed from x(n) 
as follows:

• A periodic sequence may be expanded using the 
DFS as Eq. (1).

Discrete Fourier Transform
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• Fourier series coefficients, may be derived by 
multiplying both sides of this expansion by
summing over one period and using the fact that 
the complex exponentials are orthogonal:

• The result is

Discrete Fourier Transform
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• Because                 for n = 0, 1, . . . ,N-1, x(n) may 
similarly be expanded as follows:

• Because the DFS coefficients are periodic, if we 
let X(k) be one period of         and replace          in 
the sum with X(k), then we have

• The sequence X(k) is called the N-point DFT of x(n). 

Discrete Fourier Transform
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• These coefficients are related to x(n) as follows:

• Comparing the definition of the DFT of x(n) to the 
DTFT, it follows that the DFT coefficients are 
samples of the DTFT:

• Note that DFT has a periodic property so that we 
extract the values in the range of [0, N-1].

Discrete Fourier Transform
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• The DFT has a circular shift property. 
• Suppose that the values of a sequence x(n), from 

n=0 to n=N-1, are marked around a circle as 
illustrated in Figure (a).

• A circular shift to the right by no corresponds to a 
rotation of the circle no positions in a clockwise 
direction as shown in Figure (b).

DFT Circular Shift Property
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• Another way to circularly shift a sequence is to 
form the periodic sequence        , perform a linear 
shift,               and then extract one period of               
by multiplying by a rectangular window.

• The circular shift of a sequence x(n) is defined as 
follows:

• where no is the amount of the shift and  is a 
rectangular window.

DFT Circular Shift Property

( )x n
0( )x n n 0( )x n n

( )N nR
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x n n n x n n n  R R
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• Examples illustrating the circular shift of a four-
point sequence are shown in Figures (a), (b). (c), 
and (d).

DFT Circular Shift Property
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• Let h(n) and x(n) be finite-length sequences of 
length N with N-point DFTs H(k) and X(k), 
respectively. 

• The sequence that has a DFT equal to the product 
Y(k)=H(k)X(k) is 

• where        and         are the periodic extensions of 
the sequences x(n) and h(n), respectively. 

DFT Circular Convolution
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• Because        = h(n) for              , the sum in Eq. (2) 
may also be written as

• The sequence y(n) in Eq. (3) is the N-point circular 
convolution of h(n) with x(n), and it is written as

DFT Circular Convolution

(3)
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• In general, circular convolution is not the same as 
linear convolution.

• However, there is a relationship between circular 
and linear convolution that illustrates what steps 
must be added to ensure that they are the same. 

• Specifically, let x(n) and h(n) be finite-length 
sequences and let y(n) be the linear convolution:

• The N-point circular convolution of x(n) with h(n) is 
related to y(n) as follows:

• The circular convolution of two sequences is 
found by performing the linear convolution and 
aliasing the result.

Circular Versus Linear Convolution 
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Example: Let us find the four-point circular 
convolution of the sequences h(n) and x(n): the linear 
convolution is 
• We may set up a table to evaluate the sum

• This is done by listing the values of the sequence 
y(n + kN) in a table and summing these values for 
n = 0,1,2,3. 

• Thus, we have

• Summing the columns for              , we have

Circular Versus Linear Convolution 
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• An important property that follows from Eq. (4) is 
that if y(n) is of length N or less, circular 
convolution is equivalent to linear convolution.

• Thus, if h(n) and x(n) are finite-length sequences 
of length N1 and N2, respectively,                            is 
of length                  , and the N-point circular 
convolution is equivalent to linear convolution 
provided                   .

Circular Versus Linear Convolution 

( ) ( )* ( )y n h n x n

1 2 1N N 

1 2 1N N N  

       h n x n h n x n Ⓝ
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• The DFT provides a convenient way to perform 
convolutions without the convolution sum.

• Specifically, if h(n) is N1 points long and x(n) is N2 
points long, h(n) may be linearly convolved with 
x(n) as follows:
1. Pad the sequences h(n) and x(n) with zeros so 

that they are of length                     .
2. Find the N-point DFTs of h(n) and x(n).
3. Multiply the DFTs to form the product 

Y(k)=H(k)X(k) .
4. Find the inverse DFT of Y(k).

• Significant computational savings for DFT may be 
realized with the fast Fourier transform (FFT). 

Linear Convolution Using DFT 

1 2 1N N N  
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• The analytic Fourier transform of a function g of 
two variables x and y is given by:

• where G(fX , fY) is the transform result and fX and fY
are independent frequency variables associated 
with x and y, respectively. 

• This operation is often described in a shorthand 
manner as 

• The analytic inverse Fourier transform is given by:

• The shorthand notation for this operation is  

2D Fourier Transform Definitions

 ( , ) ( , ).  X Yg x y G f f

 1 ( , ) ( , ). X YG f f g x y

     , , exp 2 ,X Y X YG f f g x y j f x f y dxdy




     

     , , exp 2 .X Y X Y X Yg x y G f f j f x f y df df




    
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• The analytic Fourier transform of a function g of 
two variables x and y is repeated for reference:

• First, assume g(x,y) is sampled as  
• The integrals in Eq. (5) can be approximated using 

a Riemann sum:

Discrete Fourier Transform from 
Continuous Transform

     , , exp 2 .X Y X YG f f g x y j f x f y dxdy




     

2 1 2 1

2 2

... ... .
N M

n N m M

dxdy x y
   

  

    

   , , .g m x n y g m n   

(5)
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• The convention for the frequency domain is to 
divide this continuous space indicated by fX and fY, 
into M and N evenly spaced coordinate values as 
follows (M, N: total number of samples)

• where p and q are integers that index multiples of 
the frequency sample intervals.

• In fact, p and q take on the same values as m and n, 
respectively, since the spatial and frequency arrays 
have the same number of elements.

Discrete Fourier Transform from 
Continuous Transform

, ,..., 1;
2 2

, ,..., 1;
2 2

X

Y

p M M
f where p

M x
q N N

f where q
N y

   


   


1 1 1 1
, .X Y

X Y

f and f
M x L N y L

     
 

(6)
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• Note that the maximum absolute values of the 
frequency coordinates in Eq. (6) are the Nyquist
frequencies 1/(2Δx) = fNX and 1/(2Δy) = fNY.

• Incorporating Eq. (6) into the complex exponential 
kernel of Eq. (5) yields

Discrete Fourier Transform from 
Continuous Transform

 exp 2 exp 2

exp 2 .

X Y

p q
j f x f y j m x n y

M x N y

pm qn
j

M N

 



  
               

        
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• Finally, we arrive at the following form of the DFT:

• The inverse discrete Fourier transform (DFT−1) is 
derived in a similar way and is written as:

• The forward and inverse DFTs are not usually 
accomplished with a direct use of Eqs. (7), (8): 
they are accomplished with the computationally 
efficient FFT and FFT−1 algorithms.

Discrete Fourier Transform from 
Continuous Transform

   
2 1 2 1

2 2

, , exp 2 ,
M N

m M n N

pm qn
G p q g m n j

M N


 

 

        
  

   
2 1 2 1

2 2

1
, , exp 2 .

M N

p N q M

pm qn
g m n G p q j

MN M N


 

 

       
  

(7)

(8)
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• Analytic rectangle function is shown in Fig. (a) 
(solid line) along with a sampled version (dots).

• The periodic form of the function, which extends 
(virtually) beyond the original span of the sample 
vector, is also indicated (dashed line).

Discrete Fourier Transform from 
Continuous Transform
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• Figure (b) shows the magnitude of the analytic 
spectrum of the rectangle (solid), the FFT result 
(dots), and the periodic spectrum (dashed).

Discrete Fourier Transform from 
Continuous Transform
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• The most difference between the analytic and 
sample spectra in this case is slightly larger sample 
values in the magnitude at higher frequencies. 

• This effect results from aliasing of under-sampled 
frequencies in the rectangle spectrum.

Discrete Fourier Transform from 
Continuous Transform
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If the sampling frequency is 2B where B is max frequency of the signal, 
the dashed line has the fx with 2π period 


